Identification of RNase T as a high-copy suppressor of the UV sensitivity associated with single-strand DNA exonuclease deficiency in Escherichia coli.

نویسندگان

  • M Viswanathan
  • A Lanjuin
  • S T Lovett
چکیده

There are three known single-strand DNA-specific exonucleases in Escherichia coli: RecJ, exonuclease I (ExoI), and exonuclease VII (ExoVII). E. coli that are deficient in all three exonucleases are abnormally sensitive to UV irradiation, most likely because of their inability to repair lesions that block replication. We have performed an iterative screen to uncover genes capable of ameliorating the UV repair defect of xonA (ExoI-) xseA (ExoVII-) recJ triple mutants. In this screen, exonuclease-deficient cells were transformed with a high-copy E. coli genomic library and then irradiated; plasmids harvested from surviving cells were used to seed subsequent rounds of transformation and selection. After several rounds of selection, multiple plasmids containing the rnt gene, which encodes RNase T, were found. An rnt plasmid increased the UV resistance of a xonA xseA recJ mutant and uvrA and uvrC mutants; however, it did not alter the survival of xseA recJ or recA mutants. RNase T also has amino acid sequence similarity to other 3' DNA exonucleases, including ExoI. These results suggest that RNase T may possess a 3' DNase activity capable of substituting for ExoI in the recombinational repair of UV-induced lesions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-strand DNA-specific exonucleases in Escherichia coli. Roles in repair and mutation avoidance.

Mutations in the genes encoding single-strand DNA-specific exonucleases (ssExos) of Escherichia coli were examined for effects on mutation avoidance, UV repair, and conjugational recombination. Our results indicate complex and partially redundant roles for ssExos in these processes. Although biochemical experiments have implicated RecJ exonuclease, Exonuclease I (ExoI), and Exonuclease VII (Exo...

متن کامل

Structural Insights Into DNA Repair by RNase T—An Exonuclease Processing 3′ End of Structured DNA in Repair Pathways

DNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation. RNase T specifically trims the 3' end of structured DNA, includ...

متن کامل

Suppression of recJ exonuclease mutants of Escherichia coli by alterations in DNA helicases II (uvrD) and IV (helD).

The recJ gene encodes a single-strand DNA-specific exonuclease involved in homologous recombination. We have isolated a pseudorevertant strain in which recJ mutant phenotypes were alleviated. Suppression of recJ was due to at least three mutations, two of which we have identified as alterations in DNA helicase genes. A recessive amber mutation, "uvrD517am," at codon 503 of the gene encoding hel...

متن کامل

Escherichia coli xonA (sbcB) mutants enhance illegitimate recombination.

Mutations of Escherichia coli K-12 were isolated that increase the frequency of deletion formation. Three of these mutations map to the gene sbcB at 43.5 min on the E. coli chromosome. Two types of mutations at sbcB have been previously defined: sbcB-type that suppress both the UV sensitivity and recombination deficiency of recBC mutants, and xonA-type that suppress only the UV sensitivity. Bot...

متن کامل

Amplified RNase H activity in Escherichia coli B/r increases sensitivity to ultraviolet radiation.

Strains of E. coli B/r transformed with the plasmid pSK760 were found to be sensitized to inactivation by ultraviolet radiation (UV) and to have elevated levels of RNase H activity. Strains transformed with the carrier vector pBR322 or the plasmid pSK762C derived from pSK760 but with an inactivated rnh gene were not sensitized. UV-inactivation data for strains having known defects in DNA repair...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 151 3  شماره 

صفحات  -

تاریخ انتشار 1999